
Оптимизация
хранения данных

в OpenSearch
Антон Касимов

Поговорим о модели хранения
данных и методах оптимизации

хранения в OpenSearch

Что вас ждет:

Как хранятся
данные

Как
оптимизировать
хранение

СПЕЦИАЛИЗИРОВАННЫЙ СИСТЕМНЫЙ ИНТЕГРАТОР
(СИСТЕМЫ МОНИТОРИНГА)

ВНЕДРЕНИЕ И НАСТРОЙКА OPENSEARCH

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА OPENSEARCH

Подписывайтесь на каналы

ОБУЧЕНИЕ НА ТРЕНИНГАХ «БАЗА»
И «ПРОДВИНУТЫЙ»

ПАРТНЕР

Тренинги в 2026 году:

• OpenSearchБаза → 18 -20 февраля

• OpenSearchПродвинутый → 18 -20 марта

* Полное расписание: https://gals.software/education/timetable

OpenSearch База (3 дня)
Теория + практика (40/60)

От основ к глубокому погружению

Установка отказоустойчивого кластера

Загрузка и трансформация данных через Logstash, DataPrepper, Fluent Bit, Vector

Визуализации, ISM, снапшоты, Benchmark

Программа курса

OpenSearch Продвинутый (3 дня)
Теория + практика (40/60)

Глубокая работа с OpenSearch

Ролевая модель и аудит-лог, маппинг и observability

Кросс-кластерная репликация и поиск, продвинутый ISM, оповещения

Работа с Vector, Logstash, DataPrepper, OpenTelemetry Collector, Ingest Pipeline и Kafka

Программа курса

КАК
ХРАНЯТСЯ
ДАННЫЕ

Как хранятся данные в OpenSearch

Запишем документ в индекс

Почему total = 2, successful = 1?

Посмотрим на шардыи сегменты

0 segment

Посмотрим на сегменты

Обратите внимание на размер индекса

Проверим созданный маппинг полей

Удалим документ

Смотрим размер индекса

Обратите внимание на размер индекса

POST /yandex-cloud/_doc

Как создается индекс

Индекс существует?

Запись документа в
существующий

индекс

Да

Нет
Есть совпадающий

шаблон?

Создать индекс на
основе шаблона

Да

Нет

Создать индекс с
настройками по

умолчанию

Запись документа в
созданный индекс

Как еще можно протестировать

https://docs.opensearch.org/latest/benchmark

Датасет eventlog
Логи Apache

20 млн документов

~15 Гб сырых данных

https://github.com/opensearch-project/opensearch-benchmark-workloads/tree/main/eventdata

Датасет eventlog

Позже мы его загрузим в кластер и посмотрим…

КАК
ОПТИМИЗИРОВАТЬ

ХРАНЕНИЕ

Работать с маппингом

POST /yandex-cloud/_doc

Как создается индекс

Индекс существует?

Запись документа в
существующий

индекс

Да

Нет
Есть совпадающий

шаблон?

Создать индекс на
основе шаблона

Да

Нет

Создать индекс с
настройками по

умолчанию

Запись документа в
созданный индекс

Динамический маппинг полей (dynamic)
JSON OPENSEARCH

string • text + keyword
• date
• float или long

integer long

float float

boolean boolean

object object

array зависит от первого не пустого
значения

Как выглядит маппинг
PUT pages
{
"mappings": {
"properties": {
"rating": { "type": "float" },
"content": { "type": "text" },
"product_id": { "type": "integer" },
"author": {
"properties": {
"first_name": { "type": "text" },
"last_name": { "type": "text" },
"email": { "type": "keyword" }

}
}

}
}

}

CREATE TABLE pages (
rating decimal(40),
content varchar(40),
product_id integer,
author_first_name varchar(40),
author_last_name varchar(40),

 author_email varchar(40),
CONSTRAINT product_id PRIMARY KEY(product_id)

);

PostgreSQL

OpenSearch

Делаем explicit-маппинг

Типы полей

object

integer

long

text
double

float

short

date

keyword

* это далеко не все типы

Типы полей

textkeyword

Анализаторы (standard)

POST /_analyze
{
"text": "Съешь ещё. .. этих мягких французских булок, да

выпей 2 литра сока!!!!!",
"analyzer": "standard"

}

POST /_analyze
{
"text": "Съешь ещё. .. этих мягких французских булок,

да выпей 2 литра сока!!!!!",
"char_filter": [],
"tokenizer": "standard",
"filter": ["lowercase"]

}

=

Анализатор (standard) {
"tokens": [

{
"token": "съешь",
"start_offset": 0,
"end_offset": 5,
"type": "<ALPHANUM>",
"position": 0

},
{

"token": "ещё",
"start_offset": 6,
"end_offset": 9,
"type": "<ALPHANUM>",
"position": 1

},
{

"token": "этих",
"start_offset": 15,
"end_offset": 19,
"type": "<ALPHANUM>",
"position": 2

},
{

"token": "мягких",
"start_offset": 20,
"end_offset": 26,
"type": "<ALPHANUM>",
"position": 3

},
{

"token": "французских",
"start_offset": 27,
"end_offset": 38,
"type": "<ALPHANUM>",
"position": 4

},
{

"token": "булок",
"start_offset": 39,
"end_offset": 44,
"type": "<ALPHANUM>",
"position": 5

},
{

Результат прохождения через анализатор

POST /_analyze
{
"text": "Съешь ещё. .. этих мягких французских булок, да

выпей 2 литра сока!!!!!",
"analyzer": "standard"

}

Инвертированный индекс
TERM DOCUMENT #1 DOCUMENT #2
съешь х х
ещё х
этих х

мягких х х
французских х

булок х х
да х

выпей х
2 х

литра х
сока х

DOCUMENT #1
"text": "Съешь ещё. .. этих мягких
французских булок, да выпей 2 литра
сока!!!!!"

DOCUMENT #2
"text": "Съешь мягких булок"

Анализатор (keyword)

POST /_analyze
{
 "text": "Съешь ещё. .. этих мягких французских булок, да
выпей 2 литра сока!!!!!",
"analyzer": "keyword"

}

{
"tokens": [
{
"token": "Съешь ещё. .. этих мягких французских булок, да

выпей 2 литра сока!!!!!",
"start_offset": 0,
"end_offset": 72,
"type": "word",
"position": 0

}
]

}

Создаем маппинг

Записываем документ

Получаем результат

* было 4143

Параметры маппинга

analyzer, coerce, copy_to, doc_values, dynamic, eager_global_ordinals, enabled, format,
index.mapping. ignore_above, ignore_malformed, index, index_options, index_phrases,
index_prefixes, meta, fields, normalizer, norms, null_value, position_increment_gap,
properties, search_analyzer, similarity, store, subobjects, term_vector

Добавляем параметр index

* отключение записи в инвертированный индекс

Смотрим размер

Отключение скоринга для поля (norms)

PUT yandex-cloud
{
 "properties": {
 "title": {
 "type": "text",
 "norms": false
 }
 }
}

Принудительная типизация (coerce)

PUT yandex-cloud
{

"settings": {
"index.mapping.coerce": false

},
"mappings": {

"properties": {
"number_one": {

"type": "integer",
"coerce": true

},
"number_two": {

"type": "integer"
}

}
}

}

PUT yandex-cloud/_doc/1
{ "number_one": "10" }

PUT yandex-cloud/_doc/1
{ "number_two": "10" }

OK

REJECT

Тип поля match_only_text
Экономия на хранении до 25% по сравнению с типом text

Отключен скоринг, учет позиций и частоты

PUT yandex-cloud
{
 "mappings": {
 "properties": {
 "tier": {
 "type": "match_only_text"
 }
 }
 }
}

Отключение динамического маппинга

PUT yandex-cloud
{

"mappings": {
"dynamic": strict,
"properties": {

"tier": {
"type": "text"

}
}

}
}

PUT yandex-cloud
{

"mappings": {
"dynamic": false,
"properties": {

"tier": {
"type": "text"

}
}

}
}

Отключение динамического маппинга
(дополнительные поля документов не будут
проиндексированы, но запишутся в _source)

Ограничение создания документов
(документ, содержащий дополнительные
поля, будет отброшен)

Полу-динамический маппинг
Подсказывает OpenSearch правильный тип данных

PUT /dynamic_template_test
{
 "mappings": {
 "dynamic_templates": [
 {
 "integers": {
 "match_mapping_type": "long",
 "mapping": {
 "type": "integer"
 }
 }
 }
]
 }
}

Полу-динамический маппинг
Типизация по названию полей (match и unmatch)

PUT yandex-cloud
{
 "mappings": {
 "dynamic_templates": [
 {
 "strings_only_text": {
 "match_mapping_type": "string",
 "match": "text_*",
 "unmatch": "*_keyword",
 "mapping": {
 "type": "text"
 }
 }
 },
 {
 "strings_only_keyword": {
 "match_mapping_type": "string",
 "match": "*_keyword",
 "mapping": {
 "type": "keyword"
 }
 }
 }
]
 }
}

Изменить кодек для сжатия

Что такое кодеки

Кодеки индекса определяют способ сжатия и хранения на диске полей,
хранящихся в индексе. Кодек индекса управляется статической настройкой
index.codec, определяющей алгоритм сжатия. Эта настройка влияет на размер
сегмента индекса и производительность операций индексирования.

default — этот кодек использует алгоритм LZ4 с предустановленным словарем, который отдает
приоритет производительности, а не степени сжатия. Он обеспечивает более быструю
индексациюи поиск по сравнениюс другими кодеками best_compression, но может привести к
увеличениюразмера индекса/шарда. Если в настройках индекса не указан кодек, то в качестве
алгоритма сжатия по умолчаниюиспользуется LZ4.

best_compression — этот кодек использует zlib в качестве базового алгоритма сжатия. Он
обеспечивает высокие коэффициенты сжатия, что приводит к уменьшениюразмеров индексов.
Однако это может повлечь за собой дополнительнуюнагрузку на CPU во время операций
индексирования и, следовательно, привести к высоким задержкам индексирования и поиска.

zstd (OpenSearch 2.9 и более поздние) — этот кодек обеспечивает значительное сжатие,
сравнимое с кодеком best_compression, при разумном использовании CPU и улучшенной
производительности индексирования и поиска по сравнениюс кодеком default.

zstd_no_dict (OpenSearch 2.9 и более поздние) – этот кодек похож на zstd, но не включает функцию
сжатия словаря. Он обеспечивает более быструюиндексациюи операции поиска по сравнениюс
zstd, но за счет немного большего размера индекса.

Какие бывают кодеки

default — этот кодек использует алгоритм LZ4 с предустановленным словарем, который отдает
приоритет производительности, а не степени сжатия. Он обеспечивает более быструю
индексациюи поиск по сравнениюс другими кодеками best_compression, но может привести к
увеличениюразмера индекса/шарда. Если в настройках индекса не указан кодек, то в качестве
алгоритма сжатия по умолчаниюиспользуется LZ4.

best_compression — этот кодек использует zlib в качестве базового алгоритма сжатия. Он
обеспечивает высокие коэффициенты сжатия, что приводит к уменьшениюразмеров индексов.
Однако это может повлечь за собой дополнительнуюнагрузку на CPU во время операций
индексирования и, следовательно, привести к высоким задержкам индексирования и поиска.

zstd (OpenSearch 2.9 и более поздние) — этот кодек обеспечивает значительное сжатие,
сравнимое с кодеком best_compression, при разумном использовании CPU и улучшенной
производительности индексирования и поиска по сравнениюс кодеком default.

zstd_no_dict (OpenSearch 2.9 и более поздние) – этот кодек похож на zstd, но не включает функцию
сжатия словаря. Он обеспечивает более быструюиндексациюи операции поиска по сравнениюс
zstd, но за счет немного большего размера индекса.

Какие бывают кодеки

zstd и zstd_no_dict дополнительно позволяют указать степень сжатия [1..6]. По умолчанию3.

Более высокий уровень сжатия приводит к более высокому коэффициенту сжатия (меньшему
объему памяти) с ухудшением скорости (более низкие скорости сжатия и распаковки приводят к
большей задержке индексирования и поиска).

Дополнительное сжатие

PUT yandex-cloud
{
 "settings": {
 "index.codec": "zstd",
 "index.codec.compression_level": 6
 }
}

Логи Apache, 20 млн записей, 15 Гб в сыром виде

Датасет eventdata

default vs zstd 6

Загрузим eventdataс разной степенью
сжатия

Смотрим на маппинг

Вспоминаем про match_only_text

text vs match_only_text

Загрузим eventdataснова

Работать с cluster_state

Определение cluster_state
Внутренняя структура данных, которая отслеживает информацию, необходимую каждому узлу.
Распространяется при помощи мастер-ноды. Включает в себя:

o Идентификаторы и атрибуты других узлов в кластере.

o Настройки для всего кластера.

o Метаданные индекса, включая сопоставление и настройки для каждого индекса.

o Местоположение и состояние каждой копии сегмента в кластере.

o Выбранный главный узел гарантирует, что каждый узел в кластере имеет копию одного и того же состояния
кластера. API состояния кластера позволяет получить представление этого внутреннего состояния для целей
отладки или диагностики.

Определение текущего размера _state

Если , то

Делаем как для себя.

gals.software

